Fundamentals Of Heat And Mass Transfer

Posted on
  • Export Record
  • Add to Book BagRemove from Book Bag
  1. Fundamentals Of Heat And Mass Transfer Chegg

Internet Archive BookReader Solution Manual Fundamentals Of Heat And Mass Transfer 6th Edition Internet Archive BookReader Solution Manual Fundamentals Of Heat And Mass Transfer 6th Edition. Internet Archive BookReader Solution Manual Fundamentals Of Heat And Mass Transfer 6th Edition. Fundamentals of Heat and Mass Transfer, 7th Edition is the gold standard of heat transfer pedagogy for more than 30 years, with a commitment to continuous improvement by four authors having more than 150 years of combined experience in heat transfer education, research and practice.Using a rigorous and systematic problem-solving methodology pioneered by this text, it is abundantly filled with. Fundamentals of heat and mass transfer 7th edition incropera solutions manual This is Solutions manual for Fundamentals of Heat and Mass Transfer Bergman Lavine Incropera DeWitt 7th edition a the solutions manual for original book, easily to download in pdf. Access Fundamentals of Heat and Mass Transfer 7th Edition solutions now.

Key

Transfer

Fundamentals of heat and mass transfer.

Bibliographic Details
Other Authors:
Format:Book
Language:English
Published:Hoboken, NJ :John Wiley,c2011
Edition:7th ed. /
Subjects:
Tags: Add Tag
MassTable of Contents:

Fundamentals Of Heat And Mass Transfer Chegg

  • Machine generated contents note:
  • ch. 1
  • Introduction
  • 1.1.
  • What and How?
  • 1.2.
  • Physical Origins and Rate Equations
  • 1.2.1.
  • Conduction
  • 1.2.2.
  • Convection
  • 1.2.3.
  • Radiation
  • 1.2.4.
  • Thermal Resistance Concept
  • 1.3.
  • Relationship to Thermodynamics
  • 1.3.1.
  • Relationship to the First Law of Thermodynamics (Conservation of Energy)
  • 1.3.2.
  • Relationship to the Second Law of Thermodynamics and the Efficiency of Heat Engines
  • 1.4.
  • Units and Dimensions
  • 1.5.
  • Analysis of Heat Transfer Problems: Methodology
  • 1.6.
  • Relevance of Heat Transfer
  • 1.7.
  • Summary
  • References
  • Problems
  • ch. 2
  • Introduction to Conduction
  • 2.1.
  • Conduction Rate Equation
  • 2.2.
  • Thermal Properties of Matter
  • 2.2.1.
  • Thermal Conductivity
  • 2.2.2.
  • Other Relevant Properties
  • 2.3.
  • Heat Diffusion Equation
  • 2.4.
  • Boundary and Initial Conditions
  • 2.5.
  • Summary
  • References
  • Problems
  • ch. 3
  • One-Dimensional, Steady-State Conduction
  • 3.1.
  • Plane Wall
  • 3.1.1.
  • Temperature Distribution
  • 3.1.2.
  • Thermal Resistance
  • 3.1.3.
  • Composite Wall
  • 3.1.4.
  • Contact Resistance
  • 3.1.5.
  • Porous Media
  • 3.2.
  • Alternative Conduction Analysis
  • 3.3.
  • Radial Systems
  • 3.3.1.
  • Cylinder
  • 3.3.2.
  • Sphere
  • 3.4.
  • Summary of One-Dimensional Conduction Results
  • 3.5.
  • Conduction with Thermal Energy Generation
  • 3.5.1.
  • Plane Wall
  • 3.5.2.
  • Radial Systems
  • 3.5.3.
  • Tabulated Solutions
  • 3.5.4.
  • Application of Resistance Concepts
  • 3.6.
  • Heat Transfer from Extended Surfaces
  • 3.6.1.
  • General Conduction Analysis
  • 3.6.2.
  • Fins of Uniform Cross-Sectional Area
  • 3.6.3.
  • Fin Performance
  • 3.6.4.
  • Fins of Nonuniform Cross-Sectional Area
  • 3.6.5.
  • Overall Surface Efficiency
  • 3.7.
  • Bioheat Equation
  • 3.8.
  • Thermoelectric Power Generation
  • 3.9.
  • Micro- and Nanoscale Conduction
  • 3.9.1.
  • Conduction Through Thin Gas Layers
  • 3.9.2.
  • Conduction Through Thin Solid Films
  • 3.10.
  • Summary
  • References
  • Problems
  • ch. 4
  • Two-Dimensional, Steady-State Conduction
  • 4.1.
  • Alternative Approaches
  • 4.2.
  • Method of Separation of Variables
  • 4.3.
  • Conduction Shape Factor and the Dimensionless Conduction Heat Rate
  • 4.4.
  • Finite-Difference Equations
  • 4.4.1.
  • Nodal Network
  • 4.4.2.
  • Finite-Difference Form of the Heat Equation
  • 4.4.3.
  • Energy Balance Method
  • 4.5.
  • Solving the Finite-Difference Equations
  • 4.5.1.
  • Formulation as a Matrix Equation
  • 4.5.2.
  • Verifying the Accuracy of the Solution
  • 4.6.
  • Summary
  • References
  • Problems
  • 4S.1.
  • Graphical Method
  • 4S.1.1.
  • Methodology of Constructing a Flux Plot
  • 4S.1.2.
  • Determination of the Heat Transfer Rate
  • 4S.1.3.
  • Conduction Shape Factor
  • 4S.2.
  • Gauss-Seidel Method: Example of Usage
  • References
  • Problems
  • ch. 5
  • Transient Conduction
  • 5.1.
  • Lumped Capacitance Method
  • 5.2.
  • Validity of the Lumped Capacitance Method
  • 5.3.
  • General Lumped Capacitance Analysis
  • 5.3.1.
  • Radiation Only
  • 5.3.2.
  • Negligible Radiation
  • 5.3.3.
  • Convection Only with Variable Convection Coefficient
  • 5.3.4.
  • Additional Considerations
  • 5.4.
  • Spatial Effects
  • 5.5.
  • Plane Wall with Convection
  • 5.5.1.
  • Exact Solution
  • 5.5.2.
  • Approximate Solution
  • 5.5.3.
  • Total Energy Transfer
  • 5.5.4.
  • Additional Considerations
  • 5.6.
  • Radial Systems with Convection
  • 5.6.1.
  • Exact Solutions
  • 5.6.2.
  • Approximate Solutions
  • 5.6.3.
  • Total Energy Transfer
  • 5.6.4.
  • Additional Considerations
  • 5.7.
  • Semi-Infinite Solid
  • 5.8.
  • Objects with Constant Surface Temperatures or Surface Heat Fluxes
  • 5.8.1.
  • Constant Temperature Boundary Conditions
  • 5.8.2.
  • Constant Heat Flux Boundary Conditions
  • 5.8.3.
  • Approximate Solutions
  • 5.9.
  • Periodic Heating
  • 5.10.
  • Finite-Difference Methods
  • 5.10.1.
  • Discretization of the Heat Equation: The Explicit Method
  • 5.10.2.
  • Discretization of the Heat Equation: The Implicit Method
  • 5.11.
  • Summary
  • References
  • Problems
  • 5S.1.
  • Graphical Representation of One-Dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere
  • 5S.2.
  • Analytical Solutions of Multidimensional Effects
  • References
  • Problems
  • ch. 6
  • Introduction to Convection
  • 6.1.
  • Convection Boundary Layers
  • 6.1.1.
  • Velocity Boundary Layer
  • 6.1.2.
  • Thermal Boundary Layer
  • 6.1.3.
  • Concentration Boundary Layer
  • 6.1.4.
  • Significance of the Boundary Layers
  • 6.2.
  • Local and Average Convection Coefficients
  • 6.2.1.
  • Heat Transfer
  • 6.2.2.
  • Mass Transfer
  • 6.2.3.
  • Problem of Convection
  • 6.3.
  • Laminar and Turbulent Flow
  • 6.3.1.
  • Laminar and Turbulent Velocity Boundary Layers
  • 6.3.2.
  • Laminar and Turbulent Thermal and Species Concentration Boundary Layers
  • 6.4.
  • Boundary Layer Equations
  • 6.4.1.
  • Boundary Layer Equations for Laminar Flow
  • 6.4.2.
  • Compressible Flow
  • 6.5.
  • Boundary Layer Similarity: The Normalized Boundary Layer Equations
  • 6.5.1.
  • Boundary Layer Similarity Parameters
  • 6.5.2.
  • Functional Form of the Solutions
  • 6.6.
  • Physical Interpretation of the Dimensionless Parameters
  • 6.7.
  • Boundary Layer Analogies
  • 6.7.1.
  • Heat and Mass Transfer Analogy
  • 6.7.2.
  • Evaporative Cooling
  • 6.7.3.
  • Reynolds Analogy
  • 6.8.
  • Summary
  • References
  • Problems
  • 6S.1.
  • Derivation of the Convection Transfer Equations
  • 6S.1.1.
  • Conservation of Mass
  • 6S.1.2.
  • Newton's Second Law of Motion
  • 6S.1.3.
  • Conservation of Energy
  • 6S.1.4.
  • Conservation of Species
  • References
  • Problems
  • ch. 7
  • External Flow
  • 7.1.
  • Empirical Method
  • 7.2.
  • Flat Plate in Parallel Flow
  • 7.2.1.
  • Laminar Flow over an Isothermal Plate: A Similarity Solution
  • 7.2.2.
  • Turbulent Row over an Isothermal Plate
  • 7.2.3.
  • Mixed Boundary Layer Conditions
  • 7.2.4.
  • Unheated Starting Length
  • 7.2.5.
  • Flat Plates with Constant Heat Flux Conditions
  • 7.2.6.
  • Limitations on Use of Convection Coefficients
  • 7.3.
  • Methodology for a Convection Calculation
  • 7.4.
  • Cylinder in Cross Flow
  • 7.4.1.
  • Flow Considerations
  • 7.4.2.
  • Convection Heat and Mass Transfer
  • 7.5.
  • Sphere
  • 7.6.
  • Flow Across Banks of Tubes
  • 7.7.
  • Impinging Jets
  • 7.7.1.
  • Hydrodynamic and Geometric Considerations
  • 7.7.2.
  • Convection Heat and Mass Transfer
  • 7.8.
  • Packed Beds
  • 7.9.
  • Summary
  • References
  • Problems
  • ch. 8
  • Internal Flow
  • 8.1.
  • Hydrodynamic Considerations
  • 8.1.1.
  • Flow Conditions
  • 8.1.2.
  • Mean Velocity
  • 8.1.3.
  • Velocity Profile in the Fully Developed Region
  • 8.1.4.
  • Pressure Gradient and Friction Factor in Fully Developed Flow
  • 8.2.
  • Thermal Considerations
  • 8.2.1.
  • Mean Temperature
  • 8.2.2.
  • Newton's Law of Cooling
  • 8.2.3.
  • Fully Developed Conditions
  • 8.3.
  • Energy Balance
  • 8.3.1.
  • General Considerations
  • 8.3.2.
  • Constant Surface Heat Flux
  • 8.3.3.
  • Constant Surface Temperature
  • 8.4.
  • Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations
  • 8.4.1.
  • Fully Developed Region
  • 8.4.2.
  • Entry Region
  • 8.4.3.
  • Temperature-Dependent Properties
  • 8.5.
  • Convection Correlations: Turbulent How in Circular Tubes
  • 8.6.
  • Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus
  • 8.7.
  • Heat Transfer Enhancement
  • 8.8.
  • Flow in Small Channels
  • 8.8.1.
  • Microscale Convection in Gases (0.1 001b(So001b(Bm [≤] Dh [≤] 100 001b(So001b(Bm)
  • 8.8.2.
  • Microscale Convection in Liquids
  • 8.8.3.
  • Nanoscale Convection (Dh [≤] 100 nm)
  • 8.9.
  • Convection Mass Transfer
  • 8.10.
  • Summary
  • References
  • Problems
  • ch. 9
  • Free Convection
  • 9.1.
  • Physical Considerations
  • 9.2.
  • Governing Equations for Laminar Boundary Layers
  • 9.3.
  • Similarity Considerations
  • 9.4.
  • Laminar Free Convection on a Vertical Surface
  • 9.5.
  • Effects of Turbulence
  • 9.6.
  • Empirical Correlations: External Free Convection Rows
  • 9.6.1.
  • Vertical Plate
  • 9.6.2.
  • Inclined and Horizontal Plates
  • 9.6.3.
  • Long Horizontal Cylinder
  • 9.6.4.
  • Spheres
  • 9.7.
  • Free Convection Within Parallel Plate Channels
  • 9.7.1.
  • Vertical Channels
  • 9.7.2.
  • Inclined Channels
  • 9.8.
  • Empirical Correlations: Enclosures
  • 9.8.1.
  • Rectangular Cavities
  • 9.8.2.
  • Concentric Cylinders
  • 9.8.3.
  • Concentric Spheres
  • 9.9.
  • Combined Free and Forced Convection
  • 9.10.
  • Convection Mass Transfer
  • 9.11.
  • Summary
  • References
  • Problems
  • ch. 10
  • Boiling and Condensation
  • 10.1.
  • Dimensionless Parameters in Boiling and Condensation
  • 10.2.
  • Boiling Modes
  • 10.3.
  • Pool Boiling
  • 10.3.1.
  • Boiling Curve
  • 10.3.2.
  • Modes of Pool Boiling
  • 10.4.
  • Pool Boiling Correlations
  • 10.4.1.
  • Nucleate Pool Boiling
  • 10.4.2.
  • Critical Heat Flux for Nucleate Pool Boiling
  • 10.4.3.
  • Minimum Heat Flux
  • 10.4.4.
  • Film Pool Boiling
  • 10.4.5.
  • Parametric Effects on Pool Boiling
  • 10.5.
  • Forced Convection Boiling
  • 10.5.1.
  • External Forced Convection Boiling
  • 10.5.2.
  • Two-Phase Flow
  • 10.5.3.
  • Two-Phase Flow in Microchannels
  • 10.6.
  • Condensation: Physical Mechanisms
  • 10.7.
  • Laminar Film Condensation on a Vertical Plate
  • 10.8.
  • Turbulent Film Condensation
  • 10.9.
  • Film Condensation on Radial Systems
  • 10.10.
  • Condensation in Horizontal Tubes
  • 10.11.
  • Dropwise Condensation
  • 10.12.
  • Summary
  • References
  • Problems
  • ch. 11
  • Heat Exchangers
  • 11.1.
  • Heat Exchanger Types
  • 11.2.
  • Overall Heat Transfer Coefficient
  • 11.3.
  • Heat Exchanger Analysis: Use of the Log Mean Temperature Difference
  • 11.3.1.
  • Parallel-Flow Heat Exchanger
  • 11.3.2.
  • Counterflow Heat Exchanger
  • 11.3.3.
  • Special Operating Conditions
  • 11.4.
  • Heat Exchanger Analysis: The Effectiveness
  • NTU Method
  • Contents note continued:
  • 11.4.1.
  • Definitions
  • 11.4.2.
  • Effectiveness
  • NTU Relations
  • 11.5.
  • Heat Exchanger Design and Performance Calculations
  • 11.6.
  • Additional Considerations
  • 11.7.
  • Summary
  • References
  • Problems
  • 11S.1.
  • Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers
  • 11S.2.
  • Compact Heat Exchangers
  • References
  • Problems
  • ch. 12
  • Radiation: Processes and Properties
  • 12.1.
  • Fundamental Concepts
  • 12.2.
  • Radiation Heat Fluxes
  • 12.3.
  • Radiation Intensity
  • 12.3.1.
  • Mathematical Definitions
  • 12.3.2.
  • Radiation Intensity and Its Relation to Emission
  • 12.3.3.
  • Relation to Irradiation
  • 12.3.4.
  • Relation to Radiosity for an Opaque Surface
  • 12.3.5.
  • Relation to the Net Radiative Flux for an Opaque Surface
  • 12.4.
  • Blackbody Radiation
  • 12.4.1.
  • Planck Distribution
  • 12.4.2.
  • Wien's Displacement Law
  • 12.4.3.
  • Stefan
  • Boltzmann Law
  • 12.4.4.
  • Band Emission
  • 12.5.
  • Emission from Real Surfaces
  • 12.6.
  • Absorption, Reflection, and Transmission by Real Surfaces
  • 12.6.1.
  • Absorptivity
  • 12.6.2.
  • Reflectivity
  • 12.6.3.
  • Transmissivity
  • 12.6.4.
  • Special Considerations
  • 12.7.
  • Kirchhoff's Law
  • 12.8.
  • Gray Surface
  • 12.9.
  • Environmental Radiation
  • 12.9.1.
  • Solar Radiation
  • 12.9.2.
  • Atmospheric Radiation Balance
  • 12.9.3.
  • Terrestrial Solar Irradiation
  • 12.10.
  • Summary
  • References
  • Problems
  • ch. 13
  • Radiation Exchange Between Surfaces
  • 13.1.
  • View Factor
  • 13.1.1.
  • View Factor Integral
  • 13.1.2.
  • View Factor Relations
  • 13.2.
  • Blackbody Radiation Exchange
  • 13.3.
  • Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure
  • 13.3.1.
  • Net Radiation Exchange at a Surface
  • 13.3.2.
  • Radiation Exchange Between Surfaces
  • 13.3.3.
  • Two-Surface Enclosure
  • 13.3.4.
  • Radiation Shields
  • 13.3.5.
  • Reradiating Surface
  • 13.4.
  • Multimode Heat Transfer
  • 13.5.
  • Implications of the Simplifying Assumptions
  • 13.6.
  • Radiation Exchange with Participating Media
  • 13.6.1.
  • Volumetric Absorption
  • 13.6.2.
  • Gaseous Emission and Absorption
  • 13.7.
  • Summary
  • References
  • Problems
  • ch. 14
  • Diffusion Mass Transfer
  • 14.1.
  • Physical Origins and Rate Equations
  • 14.1.1.
  • Physical Origins
  • 14.1.2.
  • Mixture Composition
  • 14.1.3.
  • Fick's Law of Diffusion
  • 14.1.4.
  • Mass Diffusivity
  • 14.2.
  • Mass Transfer in Nonstationary Media
  • 14.2.1.
  • Absolute and Diffusive Species Fluxes
  • 14.2.2.
  • Evaporation in a Column
  • 14.3.
  • Stationary Medium Approximation
  • 14.4.
  • Conservation of Species for a Stationary Medium
  • 14.4.1.
  • Conservation of Species for a Control Volume
  • 14.4.2.
  • Mass Diffusion Equation
  • 14.4.3.
  • Stationary Media with Specified Surface Concentrations
  • 14.5.
  • Boundary Conditions and Discontinuous Concentrations at Interfaces
  • 14.5.1.
  • Evaporation and Sublimation
  • 14.5.2.
  • Solubility of Gases in Liquids and Solids
  • 14.5.3.
  • Catalytic Surface Reactions
  • 14.6.
  • Mass Diffusion with Homogeneous Chemical Reactions
  • 14.7.
  • Transient Diffusion
  • 14.8.
  • Summary
  • References
  • Problems
  • Appendix A
  • Thermophysical Properties of Matter
  • Appendix B
  • Mathematical Relations and Functions
  • Appendix C
  • Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems
  • Appendix D
  • Gauss-Seidel Method
  • Appendix E
  • Convection Transfer Equations
  • E.1.
  • Conservation of Mass
  • E.2.
  • Newton's Second Law of Motion
  • E.3.
  • Conservation of Energy
  • E.4.
  • Conservation of Species
  • Appendix F
  • Boundary Layer Equations for Turbulent Flow
  • Appendix G
  • Integral Laminar Boundary Layer Solution for Parallel Flow over a Flat Plate.